

MPORTANT

The information contained in this file is ONLY for the use of registered participants of the 2024 APSMO Maths Games.

All questions and solutions are copyright © 2024 by Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.

This file and/or its contents must NOT be distributed by any means, including electronically, without written consent from Australasian Problem Solving Mathematical Olympiads (APSMO) Inc.

This file and/or its contents must NOT be made available on the internet in any format. This includes school websites.

APSMO 2024 MATHS GAMES

ORGANISATION AND PROCEDURES For full details, see the Members' Area

• Maths Games papers are to be conducted under test conditions.

DO	DO NOT
 Supervise students at all times. Maintain silence. Provide blank working paper. Collect, mark and retain the papers. 	 Print the papers prior to the scheduled date. Read the questions aloud to the students. Interpret the questions for students. Permit any discussion or movement around the room.
	• Permit the use of calculators or other electronic devices.

- Papers should be scored by the PICO using the *Solutions and Answers* sheet provided.
- Original student answer sheets should be retained by the PICO until the end of the year.

Absent Students

- A student who is legitimately absent on the date of the Maths Games paper, may sit the paper on their return to school.
- If an absent student does not sit the paper on their return to school they should be marked as 'absent'.
- Note: This policy differs from the Maths Olympiads Absent Student Policy which has additional requirements.

	Suggested Time: 30 Minutes	
1A.	In a game show, if a player completes a challenge, they gain 10 points. If they do not complete a challenge, they lose 10 points. Mila's final score was 50 points. If there were 9 challenges in total, how many did Mila complete? Hint: You could guess a number of completed challenges, and see if it works.	Write your answers in the boxes on the back. Keep your
1B.	Mr Harrison has between 10 and 30 students in his class. If he arranges his students into groups of 5, there are 2 students left over. If he arranges his students into groups of 4, there are 3 students left over. How many students are in Mr Harrison's class? Hint: Try using just one of the groupings. What possibilities are there for the number of students?	answers hidden by folding backwards on this line.
1C.	I am making a pattern using a rhombus- shaped tile. Each tile has a perimeter of 40 cm. The diagrams show patterns using 1, 3, 5 and 7 tiles. A dark line marks the perimeter of each pattern. How many tiles are used if the pattern has a perimeter of 2 metres? Hint: You could build a table.	
1D.	A packet of white paper costs \$9.20. A packet of coloured paper costs \$14.50. Aadarsh paid \$75 in total for paper to use in his office. How many packets of white paper did Aadarsh buy? Hint: You could guess a number of packets of white paper, and see if it works.	
1E .	 Julia has written a computer program that takes an input number and prints an output number. If the input number has one digit, it multiplies the number by 3. If the input number has two digits, it removes the tens digit, and increases the result by 1. Julia's first input number is 1. She then continuously takes the output number that the program prints, and uses it as the next input number. What would be Julia's 100th input number? 	

MATHS GAMES

Student Name:	
Fold here. Keep y	
our answers hidden.	
	Fold here. Keep your answers hidden.

MATHS GAMES

		So (Iter	lutions and A ns in parentheses are r	nswe not requi	red)	i								
	1A: 7	1B: 27	1C: 17		11	D: 5	1E: 27							
1A.	The question is	, How many challenges	did Mila complet	e?										
	Strategy 1: Build a Table													
	Suppose Mila	completed all 9 challen Id have gained 9 x 10 =	Point	s gained	Points lost	Points total								
			9 ×	10 = 90	0 × 10 = 0	90 - 0 = 90								
	If Mila comple gained 8 × 10	ted 8 challenges, she w = 80 points.	ould have	Point	s gained	Points lost	Points total							
	She would als	o have lost $1 \times 10 = 10$	points because	9 ×	10 = 90	0 × 10 = 0	90 - 0 = 90							
	Her total score	e would have been 80 –	• 10 = 70 points.	8 ×	10 = 80	1 × 10 = 10	80 - 10 = 70							
	• gained 7 × 1	ted 7 challenges, she w 10 = 70 points, and	ould have:	Point	s gained	Points lost	Points total							
	• lost 2 × 10 =	= 20 points.		9 ×	10 = 90	0 × 10 = 0	90 - 0 = 90							
	Her total score	e would have been 70 –	20 = 50 points.	8 ×	10 = 80	1 × 10 = 10	80 - 10 = 70							
	This matches Mila complete	the question. ed 7 challenges.		7 ×	10 = 70	2 × 10 = 20	70 - 20 = 50							

Strategy 2: Find a Pattern

Every incomplete challenge reduces Mila's final score by 20 .	Complete	0	1	2	3	4	5	6	7	8	9
If she does not complete a challenge she loses 10	Incomplete	9	8	7	6	5	4	3	2	1	0
Mila completed 7 challenges.	Points	-90	-70	-50	-30	-10	10	30	50	70	90

Strategy 3: Reason Algebraically

Let <i>x</i> represent the	We can set up the following equation:	10x - 10(9 - x) = 50	
that Mila completed.	Expand brackets (note the negative):	10x - 90 + 10x = 50	
She did not complete	Collect like terms:	20x - 90 = 50	
(9 – <i>x</i>) challenges.	Add 90 to both sides:	20 <i>x</i> = 140	Mila
Her score is 50 points.	Divide both sides by 20 :	<i>x</i> = 7	challenges.

Follow-Up: Suppose there were 12 challenges, and Mila scored 60 points. How many challenges did she complete? [9]

1B. The question is, How many students are in Mr Harrison's class?

Strategy 1: Draw a Diagram, and Build a Table

If Mr Harrison arranges his students into groups of 5 , there are 2 students left over. The diagrams show some options for how his class might look	Image:
If Mr Harrison arranges his students into groups of 4, there are 3 students left over.	$\bigcirc \bigcirc $
Listing possible numbers of students in Mr Harrison's class, we can see that both groupings would occur for a class of 27 students.	Groups of 5 students + 2 X 12 17 22 27 32 Groups of 4 students + 3 X X 11 15 19 23 27

Strategy 2: Build a Table, and Eliminate All But One Possibility

Mr Harrison has between 10 and 30 students in his class. Arranging them in groups of 5 leaves a remainder of 2 .																			
No. of students	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Remainder after making groups of 5 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4																			
Arranging them in groups of 4 leaves a remainder of 3 .																			

No. of students	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Remainder after making groups of 5	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
Remainder after making groups of 4	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1

If there are 27 students in Mr Harrison's class, then he will have:

• 2 students left over if he creates groups of 5, and

• 3 students left over if he creates groups of 4.

Follow-Up: There are between 60 and 80 students in the school band. As the band conductor, Mr Harrison was surprised to find that the same situation occurs as for his class: if he arranges the band members in groups of 5, there are 2 left over, and if he arranges them in groups of 4, there are 3 left over. How many students are there in the band? [67]

Strategy 1: Find a Pattern, and Build a Table

Every time we dat													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
No. of tiles	1	3	5	7	9	11	13	15	17				
Perimeter (cm)	40	60	80	100	120	140	160	180	200				
$+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$ $+20_{1}$													

There would be **17** tiles in a pattern with a perimeter of **200** cm = **2** metres.

Strategy 2: Find a Pattern, and Reason Algebraically

1D. The question is, How many packets of white paper did Aadarsh buy?

Strategy 1: Build a Table

A packet of white A packet of coloured Aadarsh spent **\$75.00** in total. paper costs **\$14.50**. paper costs **\$9.20**. Using a table, we can work out possible combinations where the cost is close to \$75.00. We can build a table We can likewise show to show how much how much Aadarsh Aadarsh might have might have spent on Cost of coloured paper (\$) spent on white paper. coloured paper. 14.50 29.00 43.50 72.50 58.00 9.20 67.20 81.70 No. of No. of Total Total of white paper (\$) Packets Cost (\$) Packets Cost (\$) 18.40 76.40 61.90 1 9.20 1 14.50 27.60 71.10 85.60 2 18.40 2 29.00 36.80 65.80 80.30 46.00 75.00 3 27.60 3 43.50 55.20 69.70 84.20 4 4 36.80 58.00 Cost 78.90 64.40 46.00 5 72.50 5 73.60 88.10 6 55.20 The total is \$75.00 if Aadarsh spends \$46.00 on 7 64.40 white paper. 8 73.60 He can buy **5** packets of white paper for **\$46.00**.

Aadarsh bought **5** packets of white paper.

Strategy 2: Use Number Sense

A packet of white paper costs \$9.20 , or 9 dollars and 20 cents.		Since white paper costs 9 do packets of white paper must	llars and 20 be a multij) cents, the ole of 5 .	number of								
A packet of coloured paper costs \$14.50 , or 14 dollars and 50 cents.		Packets of white paper	15										
Aadarsh spent 75 dollars exactly.		Cost of white paper (\$)	46	92	138								
For the total to be a whole number of dollars, the number of cents that Aadarsh spent must be a multiple		Since coloured paper costs 14 dollars and 50 cents, the number of packets of coloured paper must be a multiple											
of 100 .		Packets of coloured paper	2	4	6								
To create 100 from combinations of 20 and 50 , we can have:		Cost of white paper (\$)	29	58	87								
 5 × 20 = 100 2 × 50 = 100 		Aadarsh spent \$75 in total, so he could not have bought more than 5 packets of white paper.											
There are no combinations that use both 20 and 50 .	Se Aadarsh's total is \$75 if he buys 5 packets of white paper, a 2 packets of coloured paper.												

Follow-Up: Cynthia spent \$138.30 on 11 packets of paper. How many packets of white paper did she buy? [4]

