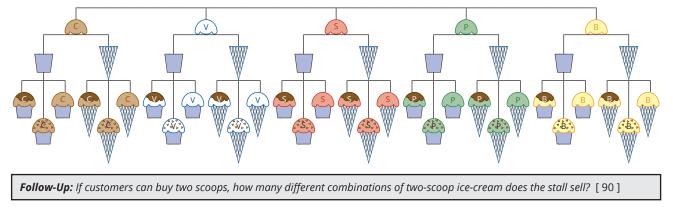


APS APS APS APS APS APS APS APS APS APS	MATHS GAMES	APSMO WEDNESDAY 3 MAY 2023	MATHS GAMES SENIOR 1
1A.	Student Name:		
	Fold		
1B.	Fold here. Keep your answers f		
1C.	rs hidden.		
1D.			
1E.			

 $\label{eq:copyright} @\ 2023 \ \mbox{Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. \ \mbox{All rights reserved}.$


MATHS GAMES

SENIOR

	1A: 30 1B: 4 1C: Thu, Fri, Sat 1D: 1The question is, How many different combinations of ice-cream does the stall sell in to														
A .	The question is, <i>Strategy 1:</i> Buil		2	combir	nations	s of ice	-cream	o does	s the stal	l sell in	total?				
	The stall has 5 chocolate, van pistachio, and	illa, stra	wberry,	1:	Choco		Vani		ری Strawber	rry Pis	(P) stachio				
	You can have y either a cup or So far, there a	a cone.		Choco		Vani		<u>s</u> Strawber	rry Pis	(P) stachio		B) nana			
	different comb We now need toppings that	ination: to consi	s. der the	Cup Cone		}	C)	S			4	B		
	on each of the combinations	se 10 di	fferent	Cone)	s s		P		B		
	Each ice-cream can have one of choices of topp	of 3		<u>(</u>	×	S	P	B			S	P	B		
		fudge, nuts, or nothing (no topping).FudgeThe stall sells 3 × 2 × 5 = 30 different combinations of ice-cream.Nuts											B		
	3 × 2 × 5 = 30 different			A VE		A V D A	A A A	A B A				A D D D	¢ ♥ ₩ ₩		
				(C)		S	P	B			S	P	B		

Strategy 2: Draw a Diagram

By drawing a tree diagram, we can see that there are 5 × 2 × 3 = 30 different combinations of ice-cream.

Copyright © 2023 Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.

1B. The question is, How many buses were there at the service station?

Strategy 1: Build a Table, and Find a Pattern

A bus has 6 wheels, and a semi-trailer has 18 wheels.

We can build a table that shows how many wheels there would be, with different combinations of **7** vehicles.


Notice that, when we exchange a bus for a semi-trailer, we increase the number of wheels by **12**.

Exchanging a semi-trailer for a bus decreases the number of wheels by **12**.

Why does this happen?

There are **78** wheels in total if there are **4** buses and **3** semi-trailers.

Strategy 2: Draw a Diagram, and Find a Pattern

When there are **4** buses and **3** semi-trailers, there are **78** wheels in total.

Strategy 3: Use Simultaneous Equations

Let there be x buses wit and y semi-trailers with			are 7 vehicles in total. are 78 wheels in total.	x + y = 7 6x + 18y = 78	(1) (2)					
Method 1: Substitution	l		Method 2: Elimination							
From (1) :	y = 7 - x	(3)	From (1) :	6x + 6y = 42	(3)					
Subst (3) into (2): 6x +	18(7 - x) = 78		Subtract (3) from (2): 12y = 78 - 42							
6 <i>x</i> + 1	26 - 18x = 78			= 36						
	-12x = 78 - 12	26		y = 3	(4)					
	= -48		Subst <mark>(4)</mark> into <mark>(1)</mark> :	x + 3 = 7						
	x = 4			x = 4						
Since $x = 4$, there were 4	huses at the servic	o station								

Since x = 4, there were 4 buses at the service station.

Follow-Up: How many buses are there, if there are 10 vehicles and 168 wheels? [1]

Copyright © 2023 Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.

Buses (6 wheels)	Semi-trailers (18 wheels)	Total wheels
7	0	$7 \times 6 + 0 \times 18 = 42 + 0 = 42$
6	1	6 × 6 + 1 × 18 = 36 + 18 = 54
5	2	$5 \times 6 + 2 \times 18 = 30 + 36 = 66$
4	3	$4 \times 6 + 3 \times 18 = 24 + 54 = 78$
3	4	$3 \times 6 + 4 \times 18 = 18 + 72 = 90$
2	5	$2 \times 6 + 5 \times 18 = 12 + 90 = 102$
1	6	$1 \times 6 + 6 \times 18 = 6 + 108 = 114$
0	7	0 × 6 + 7 × 18 = 0 + 126 = 126

MATHS GAMES

SENIOR

MATHS GAMES SENIOR **1**

1C. The question is, What days of the week should Olga choose from, for her first working day?

Strategy 1: Build a Table

Olga wants to work as many Saturdays and Sundays as possible.

Sun	Mon	Tue	Wed	Thu	Fri	Sat

If Olga's first day is a Saturday, she will have two straight weekend days at the **beginning** of her **25** consecutive days.

If so, Olga will work **8** weekend days.

	Sun	Mon	Tue	Wed	Thu	Fri	Sat
							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
ſ	16	17	18	19	20	21	22
	23	24	25				

If Olga's first day is a Sunday, then, **25** days later, she will have worked **7** weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3 4		5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25			

Starting on Thursday will result in two straight weekend days at the **end** of Olga's **25** consecutive days.

In this case, Olga will also work **8** weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25						

If Olga's first day is a Monday, then she will only work **6** weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2 3		4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25		

Starting on Friday will also result in Olga working **8** weekend days.

Olga should choose **Thursday**, **Friday or Saturday** for her first day.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25					

Strategy 2: Find a Pattern, and Reason Logically

MATHS GAMES SENIOR 1

1D. The question is, What would the ones digit of the product $3^{100} = 3 \times 3 \times 3 \times ... \times 3$ be?

Strategy: Find a Pattern, and Build a Table

We can begin by considering simpler problems.

A pattern begins to emerge after listing a few of the products.

The ones digit of the product repeats for every 4th value: **3**, **9**, **7**, **1**, then the cycle begins again at **3**.

We note that, since we are only interested in the ones digit, there is no need to multiply out the entire value of the product in each case.

To find the ones digit of the next product, we only need to multiply the ones digit of the previous result, by **3**.

Alternatively, we can recognise that the ones digit of $3^4 = 81$ is 1.

n,	and	Bui	id a	Tai	ole										I					
																owe of 3	r		es d proc	ligit luct
	3 ¹ =	=									3	=	3			1			3	
	3 ² =	-								3 ×	3	=	9			2			9	
	3 ³ =	=							3 ×	: 3 ×	3	=	27			3			7	
	34 =	-						3、	< 3 ×	: 3 ×	3	=	81			4			1	
	3 5 =	=					3、	< 3 >	< 3 ×	: 3 ×	3	=	243			5			3	
	3 ⁶ =	-				3 ×	3 >	< 3 >	< 3 ×	: 3 ×	3	=	729			6			9	
	37 =	=			3 :	× 3 ×	: 3 >	< 3 >	< 3 ×	: 3 ×	3	=	2187	7		7			7	
	3 ⁸ =	=		3	× 3 :	× 3 ×	3>	< 3 >	< 3 ×	: 3 ×	3	=	656 ⁻	1		8			1	
	3 ⁹ =	=	3	× 3	× 3 :	× 3 ×	: 3 >	< 3 >	< 3 ×	: 3 ×	3	=	1968	33	9			3		
	3 ¹⁰ =	= 3	× 3	× 3	× 3 :	× 3 ×	: 3 >	< 3 >	< 3 ×	: 3 ×	3	=	5904	49		10			9	
	Opt	ion	1: W	/ritt	en A	lgor	ith	m												
		3			9		2	7		8	1			3			9			7
	×	3		×	3		×	3		×	3		×	3		×	3		×	3
		9		2	7		8	1			3			9			7			1
	Opt	ion	2: A	rea	Moc	lel														
	•				× 3:		То	eva	aluat	te 2 4	43 >	< 3:						it of		
			80		+ 1					40	+	3	m					quir		0
	3		240		+ 3	;	3			20	+	9		rodu		nes	uigi	t of t	me	
	- [-			5			-										
ſ	Ont	ion	з∙м	lulti	nlvii	ng h	v 8'	1												

APSMO

WEDNESDAY 3 MAY 2023

Option 3: Multiplying by 81
Multiplying any number by
$3^4 = 81$ will have no effect on the

	720	+	9
80	80 × 720	+	80 × 9
+ 1	1 × 720	+	1 × 9

We can see that the ones digit of the product repeats for every 4th power of 3.

ones digit of that number.

Power of 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ones digit of product	3	9	7	1	3	9	7	1	3	9	7	1	3	9	7	1	3	9	7	1

Powers that are multiples of 4 all have 1 as the ones digit.

100 = 25 × 4, so 100 is also a multiple of 4.

Since we can see why the pattern works, we can conclude that 3^{100} has a ones digit of 1.

Follow-Up: What is the ones digit of 9999? [9]

Copyright © 2023 Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.

1E. The question is, In how many different ways can you buy exactly **96** lamingtons?

Strategy 1: Build a Table

Suppose we just buy boxes that each contain 15 lamingtons. 888 888 3333 332 SAME SAME SAME 5055 S505 S505 The quantities of lamingtons we 8 333 33 8 888 88 XX XX XX 18 S.S. S.S. 38 **3**88 38 might have are: 15 30 45 60 75 90

To end up with exactly 96 lamingtons, we could have:

No. of boxes of 15 lamingtons	0	1	2	3	4	5	6
No. of lamingtons in boxes of 15	0	15	30	45	60	75	90
Remaining lamingtons, bought in boxes of 6	96	81	66	51	36	21	6
No. of boxes of 6 lamingtons	16		11		6		1

APSMO

WEDNESDAY 3 MAY 2023

MATHS GAMES

SENIOR

105, etc.

There are some quantities of "remaining lamingtons", that are not multiples of **6**. For example, **21** is not a multiple of **6**, and so we cannot buy exactly **21** lamingtons in boxes of **6**.

There are **4** ways to buy exactly **96** lamingtons.

Strategy 2: Find the Lowest Common Multiple of 15 and 6, and Build a Table

	To buy 96 lamingtons, we		30	30	30	6
	can buy 3 lots of 30 , and then another 6 .	Method 1	5 boxes of 6	5 boxes of 6	5 boxes of 6	1 × 6
We can now list the 4 different ways to buy exactly	Method 2	2 boxes of 15	5 boxes of 6	5 boxes of 6	1 × 6	
	Method 3	2 boxes of 15	2 boxes of 15	5 boxes of 6	1 × 6	
	96 lamingtons.	Method 4	2 boxes of 15	2 boxes of 15	2 boxes of 15	1 × 6

Strategy 3: Construct an Algebraic Equation

Let there be x boxes of 15 , and y boxe	s of 6 lamingtons.	For this to work,	x	0	2	4	e
All together, there are 96 lamingtons.	15x + 6y = 96	<i>x</i> must be even,	v	16	11	6	1
Subtract 15 <i>x</i> from both sides.	6y = 96 - 15x	and <i>y</i> must be non-negative.					
Divide both sides by 6 .	$y = 16 - \frac{5}{2}x$	There are 4 possib	ole s	oluti	ions.		

Follow-Up: In how many ways can you buy exactly 150 lamingtons? [6]

Copyright © 2023 Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.