IMPORTANT

The information contained in this file is ONLY for the use of registered participants of the 2023 APSMO Maths Games.

All questions and solutions are copyright © 2023 by Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.

This file and/or its contents must NOT be distributed by any means, including electronically, without written consent from Australasian Problem Solving Mathematical Olympiads (APSMO) Inc.

This file and/or its contents must NOT be made available on the internet in any format. This includes school websites.

Organisation and Procedures

For full details, see the Members' Area

- Maths Games papers are to be conducted under test conditions.

DO

- Supervise students at all times.
- Maintain silence.
- Provide blank working paper.
- Collect, mark and retain the papers.

DO NOT

- Print the papers prior to the scheduled date.
- Read the questions aloud to the students.
- Interpret the questions for students.
- Permit any discussion or movement around the room.
- Permit the use of calculators or other electronic devices.
- Papers should be scored by the PICO using the Solutions and Answers sheet provided.
- Original student answer sheets should be retained by the PICO until the end of the year.

Absent Students

- A student who is legitimately absent on the date of the Maths Games paper, may sit the paper on their return to school.
- If an absent student does not sit the paper on their return to school they should be marked as 'absent'.
- Note: This policy differs from the Maths Olympiads Absent Student Policy which has additional requirements.

Suggested Time: $\mathbf{3 0}$ Minutes

1A. At an ice-cream stall, there are five flavours of ice-cream: chocolate, vanilla, strawberry, pistachio and banana.
You can choose to have your ice-cream in either a cup or a cone.
You can have fudge, nuts, or nothing on top.
The stall only sells ice-creams with 1 scoop, and no more than 1 topping. How many different combinations of ice-cream does the stall sell?

Hint: How many different combinations of ice-cream does the stall sell, that have no toppings?

1B. Buses have 6 wheels.
Semi-trailers have 18 wheels.
At the truck and bus service station, there were 7 vehicles and a total of 78 wheels.

How many buses were there at the service station?
Hint: How many wheels would there be, if all 7 vehicles were buses?

1C. Olga has been asked to work for 25 days in a row.
She gets paid more for working on weekends, either Saturday or Sunday, so she wants to include as many of those days as possible.
On what days of the week could Olga start working, in order to maximise the number of weekend days she works?

Hint: How might you set out Olga's options in an organised way?

1D. $3^{1}=3$.
$3^{2}=\frac{3 \times 3}{2 \text { times }}=9$.
$3^{3}=\frac{3 \times 3 \times 3}{3 \text { times }}=27$.
Suppose we multiplied out $3^{100}=\underbrace{3 \times 3 \times 3 \times 3}_{100 \text { times }}$.
What would the ones digit of the product be?
Hint: What is the ones digit of $3^{1} ? 3^{2} ? 3^{3} ? 3^{4}$? Look for a pattern.

1E. Lamingtons come in boxes of 6 , and boxes of 15 .
In how many different ways can you buy exactly 96 lamingtons?
Hint: Is it possible to buy exactly 96 lamingtons if you buy just boxes of 15 ?
Write your answers in the boxes on the back.

Keep your answers hidden by folding backwards on this line.

Solutions and Answers
(tems in parentheses are not required)
(Items in parentheses are not required)

1A: 30	1B: 4	1C: Thu, Fri, Sat	1D: 1	1E: 4

1A. The question is, How many different combinations of ice-cream does the stall sell in total?

Strategy 1: Build a Table

The stall has 5 flavours of ice-cream: chocolate, vanilla, strawberry, pistachio, and banana.

Strategy 2: Draw a Diagram

By drawing a tree diagram, we can see that there are $5 \times 2 \times 3=30$ different combinations of ice-cream.

Follow-Up: If customers can buy two scoops, how many different combinations of two-scoop ice-cream does the stall sell? [90]

1B. The question is, How many buses were there at the service station?
Strategy 1: Build a Table, and Find a Pattern
A bus has 6 wheels, and a semi-trailer has 18 wheels.

We can build a table that shows how many wheels there would be, with different combinations of 7 vehicles.
Notice that, when we exchange a bus for a semi-trailer, we increase the number of wheels by 12.
Exchanging a semi-trailer for a bus decreases the number of wheels by 12 . Why does this happen?

Buses (6 wheels)	Semi-trailers (18 wheels)	Total wheels
7	0	$7 \times 6+0 \times 18=42+0=42$
6	1	$6 \times 6+1 \times 18=36+18=54$
5	2	$5 \times 6+2 \times 18=30+36=66$
4	3	$4 \times 6+3 \times 18=24+54=78$
3	4	$3 \times 6+4 \times 18=18+72=90$
2	5	$2 \times 6+5 \times 18=12+90=102-12-$
1	6	$1 \times 6+6 \times 18=6+108=114$
0	7	$0 \times 6+7 \times 18=0+126=126{ }^{-12}$

There are 78 wheels in total if there are $\mathbf{4}$ buses and 3 semi-trailers.

Strategy 2: Draw a Diagram, and Find a Pattern

Suppose every one of the 78 wheels was on a bus.

If so, there would be $78 \div 6=13$ buses.

By grouping 3 sets of 6 wheels, we can create one semitrailer.

We can keep doing this until we have exactly 7 vehicles.

When there are 4 buses and 3 semi-trailers, there are 78 wheels in total.

Strategy 3: Use Simultaneous Equations

Let there be \boldsymbol{x} buses with 6 wheels each,
and \boldsymbol{y} semi-trailers with 18 wheels each.
:---
There are 78 wheels in total.

Method 1: Substitution

From (1):	$=7-x$
Subst (3) into (2): $\quad$$6 x+18(7-x)$ $=78$ $6 x+126-18 x$ $=78$ $-12 x$ $=78-126$ $=-48$ x $=4$	

Method 2: Elimination		
From (1):	$6 x+6 y=42$	(3)
Subtract (3) from (2):	$12 y=78-42$	
	= 36	
	$y=3$	(4)
Subst (4) into (1):	$x+3=7$	
	$x=4$	

Since $\boldsymbol{x}=4$, there were 4 buses at the service station.
Follow-Up: How many buses are there, if there are 10 vehicles and 168 wheels? [1]

1C. The question is, What days of the week should Olga choose from, for her first working day?

Strategy 1: Build a Table

Olga wants to work as many Saturdays and Sundays as possible.

Sun	Mon	Tue	Wed	Thu	Fri	Sat

If Olga's first day is a Saturday, she will have two straight weekend days at the beginning of her 25 consecutive days.
If so, Olga will work 8 weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25				

If Olga's first day is a Sunday, then, 25 days later, she will have worked 7 weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25			

Starting on Thursday will result in two straight weekend days at the end of Olga's 25 consecutive days.
In this case, Olga will also work 8 weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25						

If Olga's first day is a Monday, then she will only work 6 weekend days.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25		

Starting on Friday will also result in Olga working 8 weekend days.
Olga should choose Thursday, Friday or Saturday for her first day.

Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25					

Strategy 2: Find a Pattern, and Reason Logically

Since the days of the week cycle every 7 days, there must be exactly 2 weekend days in the first 7 days.

There will be another two weekend days in the next 7 days,
and another two in the 7 days from the 15th day to the 21st.

$$
\begin{array}{|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
\hline
\end{array}
$$

To maximise her weekend days, Olga should try to arrange to have 2 weekend days in the last 4 days. This can be achieved by starting on a:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Saturday,	S	S						S	S			π			S	S						S	S		
Friday,		S	S			V			S	S						S	S						S	S	
or Thursday.			S	S						S	S						S	S						S	S

Follow-Up: Suppose Olga has to work 30 days. On which days should she start working, to maximise her weekend days? [Saturday only]

1D. The question is, What would the ones digit of the product $3^{100}=3 \times 3 \times 3 \times \ldots \times 3$ be?

Strategy: Find a Pattern, and Build a Table

We can begin by considering simpler problems.
A pattern begins to emerge after listing a few of the products.
The ones digit of the product repeats for every 4th value:
$3,9,7,1$, then the cycle begins again at 3 .

We note that, since we are only interested in the ones digit, there is no need to multiply out the entire value of the product in each case.

To find the ones digit of the next product, we only need to multiply the ones digit of the previous result, by 3.

Alternatively, we can recognise that the ones digit of $3^{4}=81$ is 1 .

Option 1: Written Algorithm

Option 2: Area Model

To evaluate 81×3 :

To evaluate 243×3 :

Only the ones digit of each multiplicand is required, to find the ones digit of the product.

Option 3: Multiplying by 81	720		+	
Multiplying any number by $3^{4}=81$ will have no effect on the ones digit of that number.	80	80×720	+	80×9
	+1	1×720	+	1×9

We can see that the ones digit of the product repeats for every 4th power of 3 .

Power of 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ones digit of product	3	9	7	1	3	9	7	1	3	9	7	1	3	9	7	1	3	9	7	1

Powers that are multiples of 4 all have 1 as the ones digit.
$100=25 \times 4$, so 100 is also a multiple of 4 .
Since we can see why the pattern works, we can conclude that 3^{100} has a ones digit of $\mathbf{1}$.

Follow-Up: What is the ones digit of ${ }^{999}$? [9]

1E. The question is, In how many different ways can you buy exactly 96 lamingtons?

Strategy 1: Build a Table

Suppose we just buy boxes that each contain 15 lamingtons.
The quantities of lamingtons we might have are:

15

30

45

90 105, etc.

To end up with exactly 96 lamingtons, we could have:

No. of boxes of 15 lamingtons	0	1	2	3	4	5	6
No. of lamingtons in boxes of 15	0	15	30	45	60	75	90
Remaining lamingtons, bought in boxes of 6	96	81	66	51	36	21	6
No. of boxes of 6 lamingtons	16		11		6		1

There are some quantities of "remaining lamingtons", that are not multiples of 6 .
For example, 21 is not a multiple of 6 , and so we cannot buy exactly 21 lamingtons in boxes of 6 .
There are $\mathbf{4}$ ways to buy exactly 96 lamingtons.

Strategy 2: Find the Lowest Common Multiple of 15 and 6, and Build a Table

To buy 96 lamingtons		30	30	30	6
can buy 3 lots of 30, and	Method 1	5 boxes of 6	5 boxes of 6	5 boxes of 6	1×6
	Method 2	2 boxes of 15	5 boxes of 6	5 boxes of 6	1×6
We can now list the 4 different ways to buy exactly	Method 3	2 boxes of 15	2 boxes of 15	5 boxes of 6	1×6
96 lamingtons.	Method 4	2 boxes of 15	2 boxes of 15	2 boxes of 15	1×6

Strategy 3: Construct an Algebraic Equation

Let there be \boldsymbol{x} boxes of 15 , and \boldsymbol{y} boxes of 6 lamingtons.
All together, there are 96 lamingtons. $\quad 15 x+6 y=96$
Subtract $15 x$ from both sides.
$6 y=96-15 x$
Divide both sides by 6 .
$y=16-\frac{5}{2} x$

For this to work, x must be even, and y must be

x	0	2	4	6
y	16	11	6	1

There are $\mathbf{4}$ possible solutions.

Follow-Up: In how many ways can you buy exactly 150 lamingtons? [6]

