Total Time Allowed: $\mathbf{3 0}$ Minutes

1A. There are 6 cups, equally spaced, arranged in a circle in some order. Each cup has a different colour: red, orange, yellow, green, blue and purple.

The blue cup is not next to the green cup.
The purple cup is next to the yellow cup.
The red cup is next to the green and purple cups.
Which cup is directly across from the orange cup?

Write your answers in the boxes on the back.

1C. What is the sum of all the odd numbers from 1 to 19 inclusive?

1D. Oliver has a rectangular garden with an area of 28 square metres. Its length and width are a whole number of metres.

The length of the garden is 3 metres longer than its width.
Oliver places $50 \mathrm{~cm} \times 50 \mathrm{~cm}$ tiles together to make a continuous path surrounding the garden, along its edges.
How many tiles does Oliver need?

1E. Mara and Tara each have some pencils.
If Mara gives four pencils to Tara, they will have the same number of pencils.
If Tara gives two pencils to Mara, Mara will have 3 times as many pencils as Tara.
How many pencils does Mara have?

	MATHS OLYMPIAD	A 2022 WEDNESDA	N J H 2022	OLYMPIAD
Solutions and Answers For teacher use only. Not for Distribution.				
1A: Purple	1B: 3000	1C: 100	1D: 48	1E: 16

1A. The question is: Which cup is directly across from the orange cup?
METHOD 1 Strategy: Draw a diagram. Change the order of the statements to make it easier.
The diagrams could also be mirror images or rotations of the ones drawn here.

Second statement: The purple cup is next to the yellow cup. The purple cup is also next to the red cup, so it must be between the red and yellow cups.	First statement: The blue cup is not next to the green cup. The only place left for the blue cup is next to the yellow cup.

The only place left
for the orange cup is
between the blue cup
and the green cup.

We can see that the cup directly across from the orange cup is the purple cup.
METHOD 2 Strategy: Mark a place for each cup, then follow the statements in order.

2nd and 3rd statements:

The purple and yellow cups are next to each other, and the red cup is next to the purple cup.
Only the second arrangement allows this,
because it has 3 spaces together.
The red cup is next to the green and purple cups.

The orange cup must be in the one remaining place.
The cup directly across from the orange cup is the purple cup.

METHOD 3 Strategy: Guess, check and refine.
Place the cups in a circle in any order, then improve on this order by following the statements one at a time until all the statements are satisfied.

Follow-Up: Abby, Bec, Cindy, Di and Eve are sitting in a circle in some order. Cindy is sitting between Abby and Eve. Abby is NOT next to Di. Who is sitting each side of Bec? [Abby and Di]

1B. The question is: Calculate $4 \times 5 \times 6 \times 25$.
METHOD 1 Strategy: Calculate from left to right.

This calculation does not involve any grouping symbols, so you can make the calculation from left to right.
$4 \times 5=20$
$20 \times 6=120$
$120 \times 25=3000$
120×25 could be calculated using long multiplication, or using the area method of multiplication, as illustrated below.

100	20
20000	
2000	400

The last step of multiplying by 25 could also be made by realising that 25 is the same as $100 \div 4$.

120		120	100	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	120	100		120	100
25	25						25	3000	
	25				12000		25	3000	
	25				12000		25	3000	
	25						25	3000	
120×25		$\times 100 \div 4$			$2000 \div$			$=3000$.	

METHOD 2 Strategy: Use the properties of multiplication.

Because our numeration system is a decimal (i.e. base 10) system, it is easy to calculate using numbers that are powers of $10(10,100,1000$ etc.)
Look for numbers that multiply to make a power of 10.
In the expression, the first and last numbers are 4 and 25 , and we know that $4 \times 25=100$.
Re-arranging the expression:

$$
\begin{aligned}
4 \times 5 \times 6 \times 25 & =5 \times 6 \times(4 \times 25) \\
& =30 \times 100 \\
& =3000
\end{aligned}
$$

Follow-Up: Evaluate $8 \times 5 \times 6 \times 125$. [30000]

APSMO
 2022 : DIVISION J
 WEDNESDAY 23 MARCH 2022

1C. The question is: What is the sum of all the odd numbers from 1 to 19 inclusive?
METHOD 1 Strategy: Add all of the numbers.
$1+3+5+7+9+11+13+15+17+19=100$.

METHOD 2 Strategy: Look for a pattern in the sum as each number is added.

Start adding the odd numbers, one at a time.

The 1st odd number is 1 .
The 2 nd odd number is 3 .

$$
1+3=4
$$

The 3 rd odd number is 5 .

$$
1+3+5=9
$$

The 4 th odd number is 7 .

$$
1+3+5+7=16
$$

The 5 th odd number is 9 .

$$
1+3+5+7+9=25
$$

Notice that as each odd number is added, the result is the next square number.

This pattern can be seen in the diagram below, where the odd number of tiles added each time is coloured differently from the previous odd number added.

Each time another group of tiles is added, a larger square is formed.
The number 19 is the 10th odd number.
It follows that the sum of the odd numbers up to 19 is therefore 10 squared.
$10 \times 10=100$.

METHOD 3 Strategy: Use the properties of addition.

If you only have additions in an expression, changing the order of the numbers being added or grouping the additions differently does not change the value of the expression.
The pairs are joined by an arc, so each pair has the same sum.
This is known as the 'rainbow method'. In this problem, each pair has a sum of 20.

Follow-Up: What is the sum of all the odd integers from 1 to 99 inclusive? [2500]

MATHS OLYMPIAD

1D. The question is: How many tiles does Oliver need?
METHOD 1 Strategy: Draw a diagram and fit tiles around the perimeter.
The garden area is 28 square metres and its length is 3 metres longer than its width.
With an area of $28 \mathrm{~m}^{2}$ and the dimensions being a whole number of metres, the garden could be:

Since its length is $\mathbf{3}$ metres longer than its width, the garden is 4 metres wide and $\mathbf{7}$ metres long.
The square tiles have a side length of 50 cm , which is half a metre.
This means that for every metre of the perimeter, there are 2 tiles.
This makes $7 \times 2=14$ tiles along the length and $4 \times 2=8$ tiles along the width.
Then there are another 4 tiles in the corners to be drawn in.
Then count the number of tiles.
You could make the count easier by seeing the number of tiles as:
$1+14+1+8+1+14+1+8=48$
or as $(14 \times 2)+(8 \times 2)+4=48$
or as $\quad(14+8) \times 2+4=48$.
Oliver needs 48 tiles.

METHOD 2 Strategy: Draw a diagram and subtract the garden area from the total area.
Begin by drawing a diagram like the one shown in Method 1, and finding the dimensions to be $4 \mathrm{~m} \times 7 \mathrm{~m}$.
The area of the tiled path is the total area (garden plus path), less the area of the garden.

The tiles around the garden add 1 m to the width and 1 m to the length (one tile width of 0.5 m on each side of the length and one on each side of the width).

The dimensions of the total area are therefore $5 \mathrm{~m} \times 8 \mathrm{~m}$.

Path area $=$ Total area - Garden area
Path area $=(5 \times 8)-(4 \times 7) \mathrm{m}^{2}=40-28 \mathrm{~m}^{2}=12 \mathrm{~m}^{2}$.
Each tile has an area of $0.5 \times 0.5=0.25 \mathrm{~m}^{2}$.
Since 4 tiles fill a $1 \mathrm{~m}^{2}$ area, Oliver will need $4 \times 12=48$ tiles for the path around the garden.

Follow-Up: A square and a rectangle have the same perimeter. The length of the rectangle is 8 m longer than its width. If the area of the rectangle is $65 \mathrm{~m}^{2}$, what is the area of the square? [$81 \mathrm{~m}^{2}$]

APSMO
 2022 : DIVIIION J
 WEDNESDAY 23 MARCH 2022

1E. The question is, How many pencils does Mara have?
METHOD 1 Strategy: Create a table and use guess, check and refine.
Guessing and checking pairs of numbers could take many guesses.
The process could be refined by using more information from the question.
If Mara gives 4 pencils to Tara, they each have the same number of pencils.
This means that originally, Tara had 4 fewer pencils and Mara had 4 more.
Mara must therefore have originally had 8 more pencils than Tara.
If Tara can give 2 pencils to Mara, and still have at least one pencil left, Tara must have at least 3 pencils.

Before		After		
Guess for Tara's pencils	Mara's pencils	Tara's pencils after giving 2 to Mara	Mara's pencils after getting 2 from Tara	Does Mara now have 3 times as many pencils as Tara?
3	$3+8=11$	$3-2=1$	$11+2=13$	No. 13 is not 1×3.
4	$4+8=12$	$4-2=2$	$12+2=14$	No. 14 is not 2×3.
5	$5+8=13$	$5-2=3$	$13+2=15$	No. 15 is not 3×3.
6	$6+8=14$	$6-2=4$	$14+2=16$	No. 16 is not 4×3.
7	$7+8=15$	$7-2=5$	$15+2=17$	No. 17 is not 5×3.
8	$8+8=16$	$8-2=6$	$16+2=18$	Yes! 18 is 6×3.

So, Tara must have 8 pencils and Mara must have 16 pencils.

METHOD 2 Strategy: Apply algebraic thinking.

Let M stand
for the
number of
pencils Mara
has, and let T stand for the
number of pencils Tara has.

So, $M=T+8$.
Instead of saying that
Mara has M pencils,
we can say that Mara
has $T+8$ pencils.

T

If Mara
gives Tara
tpencils,
both wauld
pencils.

We have worked out that:	$T+8+2=T-2+T-2+T-2$
	$T+10=3 \times T-3 \times 2$
	$T+10=3 \times T-6$
Subtracting T from both sides:	$10=2 \times T-6$
Adding 6 to both sides:	$16=2 \times T$
Dividing both sides by 2 :	$8=T$

T stands for the number of pencils Tara has, so we can see that Tara has 8 pencils.
Mara has $T+8$ pencils.
Therefore Mara has $8+8=16$ pencils.

Follow-Up: Art has some money which is $\$ 10$ more than twice what Nick has. Nick gives Art $\$ 10$. This results in Art having 4 times as much as Nick. How much did Nick start with? [\$30]

