APPENDENTIAL	olympiad 4
Total Time Allowed: 30 Minutes	
 4A. What is the greatest possible result of dividing two different integers from the set {−7, −3, −2, +3, +4, +8} ? Express your answer as an improper fraction or mixed numeral. 	Write your answers in the boxes on the back.
 4B. A cube with 4cm edges has three channels cut through its centre, from one face to its opposite face, parallel to the faces of the original cube. Each channel has a 2cm × 2cm square crosssection. How many cubic centimetres are in the volume of the hollowed-out solid? 	Keep your answers hidden by folding backwards on this line.
 4C. Mr MacIntosh buys and sells apple pies. He pays \$8 for 5 apple pies. He then sells them at 3 apple pies for \$10. Last weekend, he bought <i>P</i> apple pies and sold all of them, making a profit of \$78. Find <i>P</i>. 	
4D. Find the smallest integer x such that x , $x + 6$, and $2x - 9$ can represent the lengths of the sides of a triangle.	
4E. In a cryptarithm, different letters represent different digits, and no leading digit equals 0. $F \in E \in$ $+ F \in I \in$ $+ F \in O \in$ $+ F \in O \in$ $+ F \in U M$ Note that the letter / does not necessarily represent the digit 1, and the letter O does not necessarily represent the digit 0. $G \in E \in E$	

RANK PROBLEM RANK AND	MATHS OLYMPIAD	APSMO 2023 : DIVISION S WEDNESDAY 6 SEPTEMBER 2023	olympiad 4
4A.	Student Name:		
4B.	Fold here. Keep your ans		
4C.	swers hidden.		
4D.			
4E.			

Solutions and Answers (Items in parentheses are not required)							
For teacher use only. Not for Distribution.							
4A: $\frac{7}{2}$ or $3\frac{1}{2}$	4B: 32 (cm ³)	4C: 45	4D: 8	4E: 1444			

4A. The question is: Find the greatest possible result of dividing two different integers from the set $\{-7, -3, -2, +3, +4, +8\}$.

th Negative Numbers				
We can reason that:	We can also reason that:			
number sentences $2 \times -3 = -3 + -3$				
= -6	-2 × (4 – 3) = -2			
-6 ÷ 2 = -3 -(2)	(-2 × 4) + (-2 × -3) = -2			
and	-8 + (-2 × -3) = -2			
-2 × 3 = -2 + -2 + -2	-2 × -3 = -2 + 8			
= -6	-2 × -3 = 6			
-6 ÷ -2 = 3 -(3)	6 ÷ -2 = -3 -(4)			
	th Negative Numbers We can reason that: $2 \times -3 = -3 + -3$ = -6 $-6 \div 2 = -3$ -(2) and $-2 \times 3 = -2 + -2 + -2$ = -6 $-6 \div -2 = 3$ -(3)			

METHOD: Eliminate all but one possibility.

From the above reasoning, we know that:	Dividend							
(1) Positive number ÷ Positive number = Positive number			-7	-3	-2	+3	+4	+8
(2) Negative number ÷ Positive number = Negative number		-7		$\frac{3}{7}$	<u>2</u> 7	$-\frac{3}{7}$	$-\frac{4}{7}$	$-\frac{8}{7}$
(3) Negative number ÷ Negative number = Positive number		-3	$\frac{7}{3}$		<u>2</u> 3	-1	$-\frac{4}{3}$	$-\frac{8}{3}$
(4) Positive number ÷ Negative number = Negative number	Diviso	-2	<u>7</u> 2	<u>3</u> 2		$-\frac{3}{2}$	-2	-4
Given that there are positive results, there is no need to calculate any results that are negative.	or	+3	$-\frac{7}{3}$	-1	$-\frac{2}{3}$		<u>4</u> 3	<u>8</u> 3
We can also ignore dividends with small magnitudes, and divisors with large magnitudes,		+4	$-\frac{7}{4}$	$-\frac{3}{4}$	$-\frac{1}{2}$	<u>3</u> 4		2
since we want our fractional result to have a large numerator and a small denominator.		+8	$-\frac{7}{8}$	$-\frac{3}{8}$	$-\frac{1}{4}$	<u>3</u> 8	$\frac{1}{2}$	
The two possibilities are $\frac{7}{2}$ and $\frac{8}{3}$. We can express them both as mixed numerals: $\frac{7}{2} = 3\frac{1}{2}$ and $\frac{8}{3} = 2\frac{2}{3}$.								

The greatest result is $\frac{7}{2}$ or $3\frac{1}{2}$.

Follow-UP: Find the greatest possible product when multiplying 3 different numbers from the given set. [168]

APSMO 2023 : DIVISION S WEDNESDAY 6 SEPTEMBER 2023

OLYMPIAD

45

\$78

4C. The question is: Find *P*, the number of apple pies that Mr MacIntosh bought to make a profit of \$78.

METHOD 1 Strategy: Build a table.

Mr MacIntosh buys	Batches of 5 pies bought	1	2	3	4	5	6	
pies: 5 apple pies for \$8.	Total number of pies	5	10	15	20	25	30	•••
	Mr MacIntosh's cost price	\$8	\$16	\$24	\$32	\$40	\$48	
			·	·	<u></u>			

Since he sells <u>all</u> of the pies at 3 apple pies for \$10 the	Batches of 5 pies bought	1	2	3	4	5	6	
	Total number of pies	5	10	15	20	25	30	•••
number of pies must	Mr MacIntosh's cost price	\$8	\$16	\$24	\$32	\$40	\$48	•••
also be a multiple of 3 .	Batches of 3 pies sold			5			10	•••
	Mr MacIntosh's sale price			\$50			\$100	

His profit can be	Batches of 5 pies bought			3			6			9
his cost price from his	Total number of pies			15			30			45
selling price.	Mr MacIntosh's cost price			\$24			\$48			\$72
To make \$78 profit,	Batches of 3 pies sold			5			10			15
Mr MacIntosh would	Mr MacIntosh's sale price			\$50			\$100			\$150
have bought 45 pies.	Profit	\$50 -	\$24 =	\$26	\$100 -	\$48 =	\$52	\$150 -	\$72 =	\$78

METHOD 2 Strategy: Find the profit for 3 pies.

Mr MacIntosh bought <mark>5</mark> apple pies for \$8 .	Mr MacIntosh's total profit is \$78 .								
Each pie costs him <mark>\$8</mark> ÷ 5 = \$1.60 .		Pies	3	6	9	12	15	30	4
3 pies would cost \$1.60 × 3 = \$4.80.		Profit	\$5.20	\$10.40	\$15.60	\$20.80	\$26	\$52	\$
Since Mr MacIntosh sells 3 apple pies for \$10 , his profit for every 3 pies is \$10 – \$4.80 = \$5.20 .		Mr Mac	Intosh	bought	a v 45 pies	whole n s to mal	↑ umber <e <b="">\$78</e>	of dolla profit.	ars

METHOD 3 Strategy: Find the profit for 1 pie.

The profit for 1 pie is $\frac{10}{3} - \frac{8}{5} = \frac{50}{15} - \frac{24}{15} = \frac{26}{15}$ dollars.		$\frac{26}{15}P = 78$
The profit for P pies is 78 dollars.	Multiplying both sides by 15 :	26 P = 1170
We can express Mr MacIntosh's weekend	Dividing both sides by 26 :	P = 45
earnings using the equation $\frac{26}{15}P = 78$.	Mr MacIntosh bought 45 pies.	

FOLLOW-UP: The next weekend, Mr MacIntosh made a profit of \$170. What is the smallest number of pies he could have sold? [99. He had to purchase 100 pies for \$160, to be able to sell 99 pies for \$330.]

OLYMPIAD

4D. The question is: Find the smallest integer x such that x, x + 6, and 2x - 9 can represent the lengths of the sides of a triangle.

METHOD 1 Strategy: Build a table, and draw a diagram.

Copyright © 2023 Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. and Mathematical Olympiads for Elementary and Middle Schools. All rights reserved.

of a quadrilateral. [6]

KARTHS MATCAL OLIVITIE	A 202 WEDNESS	olympiad 4	
 The question is: Find the smallest p METHOD: Eliminate all but one possive We know that: The leading digit for any number In the ones column, E + E + E + M It is therefore impossible for the 	F E + F I + F O + F U M G E E E		
We want the least possible whole number value of <i>GEEE</i> , so let's begin by trying $G = 1$. If $G = 1$, then <i>E</i> cannot be 1, so we'll try $E = 2$.	F 2 2 + F I 2 + F O 2 + F U M 1 2 2 2	3 2 2 + 3 1 2 + 3 0 2 + 3 U M 1 2 2 2	
 2 + 2 + 2 + M = 6 + M gives a result that has 2 in the ones place. M must then be equal to 6, with regrouping to the tens place. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	In the tens column, 1 + 2 + I + O + U = 2, since we cannot have any regrouping to the hundreds place. Such a result is not possible.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Let's try the next smallest possible whole number value of <i>GEEE</i> . We cannot have $G = 1$ and $E = 3$, since this will only work if $F = 3$, and we cannot have two letters that both represent 3.	F 3 3 + F I 3 + F O 3 + F U M 1 3 3 3	The next smallest possible value for <i>GEEE</i> is 1444. In this case, it is possible for th value of <i>F</i> to be 3 . There will need to be regrouping of two hundreds from the tens place.	ne 2 + 3 + 3 0 4 4 + 3 0 4 + 3 U M 1 4 + 3 U M
 4 + 4 + 4 + M = 12 + M gives a result that has 4 in the ones place. M must then be equal to 2, with regrouping to the tens place. 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	In the tens column, 1 + 4 + I + O + U = 24, since we need to regroup two hundred to the hundreds place. This can occur if, for example, I = 5, $O = 6$ and $U = 8$.	$S = \begin{bmatrix} 2 & 1 \\ 3 & 4 & 4 \\ + & 3 & 5 & 4 \\ + & 3 & 6 & 4 \\ + & 3 & 8 & 2 \\ \hline 1 & 4 & 4 & 4 \end{bmatrix}$

Follow-UP: In the given cryptarithm, find the greatest possible value of GEEE. [3888; one possible solution is 988 + 978 + 968 + 954 = 3888]