APSMO WEDNESDAY 23 MARCH 2022	MATHS GAMES JUNIOR
Suggested Time: 30 Minutes	
1A. Peter made marmalade sandwiches and vegemite sandwiches. He made 8 more marmalade sandwiches than vegemite sandwiches. He made 30 sandwiches in total. How many marmalade sandwiches did Peter make? Hint: You could guess a number of marmalade sandwiches, and see if it works.	Write your answers in the boxes on the back.
1B. Four girls were comparing the lengths of their jelly snakes. Amy's snake wasn't the shortest or the longest. Cassie's snake was longer than Julia's snake. Riley's snake had a length that was between that of Julia's snake and Amy's snake. Who had the second longest snake? Hint: You could draw four snakes in order of length. Which snake can't belong to Julia?	answers hidden by folding backwards on this line.
1C. Jeff, Katelyn and Lucy are motorcycle pizza delivery drivers. Together, Jeff and Katelyn can carry 18 pizzas in total, in the carriers on their motorcycles. Katelyn and Lucy can carry 19 pizzas in total. Jeff and Lucy can carry 13 pizzas in total. How many pizzas can Katelyn carry on her motorcycle by herself? Hint: Does Katelyn's motorcycle carry more or less than Jeff's motorcycle? How do you know?	
1D. Ice is sold in 5 kg bags and 2 kg bags. During a power outage, Dan bought all of the ice at his local store. He ended up with 32 kg of ice in 10 bags. How many 5 kg bags of ice did Dan buy? Hint: How many kilograms of ice would Dan have if he only bought 2 kg bags?	
1E. Tessa has 20 counters. She puts the counters in 5 piles so there is a different number of counters in each pile. What is the smallest possible number of counters she could have in the largest pile? Hint: What is the smallest number of counters required to make five differently sized piles?	

Solutions and Answers
(Items in parentheses are not required)
1A: 19 1B: Amy \quad 1C: 12 \quad 1D: 4 \quad 1E: 6

1A. The question is, How many marmalade sandwiches did Peter make?

Strategy 1: Guess, Check and Refine

Let's guess that Peter made 10 marmalade sandwiches.
He's made 8 more marmalade than vegemite, so he's
 also made 10-8=2 vegemite sandwiches.

All together, Peter would have $10+2=12$ sandwiches.
If Peter made 20 marmalade sandwiches, then he's also made 20-8=12 vegemite sandwiches. All together, Peter would have $20+12=32$ sandwiches. That's too many, but it's pretty close.

Peter made 19 marmalade sandwiches.

Strategy 2: Draw a Diagram

Peter made 8 more marmalade sandwiches than vegemite sandwiches.
Let's suppose he made those 8 marmalade sandwiches $\square \square \square$ first.
He then set out the bread, ready to make the other $30-8=22$ sandwiches.

If Peter now makes equal numbers of vegemite and marmalade sandwiches, he will continue to have 8 more marmalade sandwiches than vegemite sandwiches.

He might do this by making the sandwiches in pairs.

In his sandwich pairs, Peter has made $22 \div 2=11$ marmalade and $22 \div 2=11$ vegemite sandwiches. In total, Peter made $8+11$ = 19 marmalade sandwiches.

Follow-Up: Peter ate one of the marmalade sandwiches for breakfast, and one of the vegemite sandwiches for lunch, every day. One day, he was about to get his breakfast when he realised that exactly one-third of his remaining sandwiches were vegemite. How many sandwiches had he eaten? [6]

1B. The question is, Who had the second longest snake?

Strategy 1: Draw a Diagram, and Reason Logically

Since the length of Riley's snake is between that of Julia's and Amy's snakes, there are two possible options.

Option 1: Julia's snake is longer than Riley's, and Amy's snake is shorter than Riley's.

Option 2: Julia's snake is shorter than Riley's, and Amy's snake is longer than Riley's.

OR

We know that Amy's snake wasn't the shortest or the longest.
This means that there are two possibilities for the last snake, which belongs to Cassie.

Since Cassie's snake was longer than Julia's snake, only Option 2 satisfies all of the conditions.
Therefore, the second longest snake belongs to Amy.

Strategy 2: Draw a Diagram, and Reason Logically (2)

Let's draw the four jelly snakes.
Amy's snake is not the shortest or the longest.

Riley's snake is between Julia's snake and Amy's snake, so it's not shortest or longest either.

Cassie's snake is longer than Julia's, so Cassie's not the shortest, and Julia's not the longest.

We now know which snake is Julia's, and which snake is Cassie's. So the two middle-sized snakes must belong to Amy and Riley.

Riley's snake is between Julia's and Amy's, so it would have to be the solution on the right.
The second longest snake must belong to Amy.

Follow-Up: Cassie ate the end of her jelly snake, and now it is shorter than Julia's. Who has the second longest snake now? [RIley]

1C. The question is, How many pizzas can Katelyn carry on her motorcycle by herself?

Strategy 1: Guess, Check and Refine

Suppose Katelyn can carry 10 pizzas on her motorcycle. With Jeff, she can carry 18 . So Jeff can carry $18-10=8$ pizzas. With Lucy, she can carry 19. So Lucy can carry 19-10=9 pizzas. Together, Jeff and Lucy can carry $8+9=17$ pizzas.

Katelyn's Pizzas	10			
Jeff's Pizzas	8			
Lucy's Pizzas	9			
Jeff + Lucy	17			

Suppose Katelyn can carry 11 pizzas on her motorcycle.
With Jeff, she can carry 18 . So Jeff can carry 18-11=7 pizzas.
With Lucy, she can carry 19. So Lucy can carry 19-11 = 8 pizzas.
Together, Jeff and Lucy can carry $7+8=15$ pizzas.

Katelyn's Pizzas	10	11		
Jeff's Pizzas	8	7		
Lucy's Pizzas	9	8		
Jeff + Lucy	17	15		

We're getting close - We want a solution where Jeff and Lucy together can carry 13 pizzas. Let's increase our guess for Katelyn even further.

Suppose Katelyn can carry 12 pizzas on her motorcycle.
With Jeff, she can carry 18. So Jeff can carry 18-12 = 6 pizzas.
With Lucy, she can carry 19 . So Lucy can carry $19-12=7$ pizzas.
Together, Jeff and Lucy can carry $6+7=13$ pizzas.

Katelyn's Pizzas	10	11	12	
Jeff's Pizzas	8	7	6	
Lucy's Pizzas	9	8	7	
Jeff + Lucy	17	15	13	

That matches the question, so we can see that Katelyn can carry 12 pizzas on her motorcycle.

Strategy 2: Reason Logically

Let's think of pairs of motorcycle delivery drivers, working on three separate deliveries.

For Delivery 1, Jeff and Katelyn delivered 18 pizzas.

For Delivery 2, Katelyn and Lucy delivered 19 pizzas.

For Delivery 3, Jeff and Lucy delivered 13 pizzas.

In those three deliveries:

- Each driver carried their maximum load.
- $18+19+13=50$ pizzas were delivered.
- Each driver went out twice.

This means that, if each driver only went out once, then together they would have delivered $50 \div 2=25$ pizzas.

Working together, Jeff and Lucy are able to deliver 13 pizzas.

So Katelyn must be able to carry 25-13 = 12 pizzas on her motorcycle.

Follow-Up: Morgan starts work as another motorcycle pizza delivery driver. Together, Morgan and Jeff can carry 16 pizzas. Working together, how many pizzas can Morgan and Lucy carry on their motorcycles? [17]

1D. The question is, How many 5 kg bags of ice did Dan buy?

Strategy 1: Guess, Check and Refine

Let's guess that Dan bought 5 bags containing 5 kg of ice.
He would have $5 \times 5 \mathrm{~kg}=25 \mathrm{~kg}$ of ice in 5 kg bags.
Dan would then have $10-5=5$ bags containing 2 kg of ice.
That's $5 \times 2 \mathrm{~kg}=10 \mathrm{~kg}$ of ice in 2 kg bags.
In total, Dan would have $25 \mathrm{~kg}+10 \mathrm{~kg}=35 \mathrm{~kg}$ of ice.

No. of 5 kg bags	5			
Ice in 5 kg bags (kg)	25			
No. of 2 kg bags	5			
Ice in 2 kg bags (kg)	10			
Total ice (kg)	35			

That's too much. The question says that Dan ended up with 32 kg of ice.
To end up with less ice, we might swap one of the 5 kg bags for a 2 kg bag.
Suppose Dan bought 4 bags containing 5 kg of ice.
He would have $4 \times 5 \mathrm{~kg}=20 \mathrm{~kg}$ of ice in 5 kg bags.
There would be $10-4=6$ bags containing 2 kg of ice, for a total of $6 \times 2 \mathrm{~kg}=12 \mathrm{~kg}$ of ice in 2 kg bags.
In total, Dan would have $20 \mathrm{~kg}+12 \mathrm{~kg}=32 \mathrm{~kg}$ of ice.

No. of 5 kg bags	5	4		
Ice in 5 kg bags (kg)	25	20		
No. of 2 kg bags	5	6		
Ice in 2 kg bags (kg)	10	12		
Total ice (kg)	35	32		

That matches the question, so we can see that Dan bought 4 bags each containing 5 kg of ice.

Strategy 2: Draw a Diagram, and Reason Logically

If each of the bags contained 2 kg of ice, Dan would have $10 \times 2 \mathrm{~kg}=20 \mathrm{~kg}$ of ice.
This is $32 \mathrm{~kg}-20 \mathrm{~kg}=12 \mathrm{~kg}$ less than what he actually has.

By swapping a 2 kg bag for a 5 kg bag, Dan increases the amount of ice by $5 \mathrm{~kg}-2 \mathrm{~kg}=3 \mathrm{~kg}$.

To increase the amount of ice by 12 kg , he would need to do this swap $12 \mathrm{~kg} \div 3 \mathrm{~kg}=4$ times.

Dan bought four 5 kg bags.

Strategy 3: Draw a Diagram, and Reason Logically

If Dan bought 32 kg in 2 kg bags, then he would have $32 \mathrm{~kg} \div 2 \mathrm{~kg}=16$ bags.

If he swaps five 2 kg bags for two 5 kg bags, he would have 13 bags.

If he swaps another five 2 kg bags for two 5 kg bags, he would have 10 bags.

Since Dan bought 10 bags of ice, 4 of them must have been 5 kg bags.

1E. The question is, What is the smallest possible number of counters Tessa could have in the largest pile?

Strategy 1: Draw a Diagram, and Reason Logically

It doesn't make sense to have a pile of 0 counters, so the smallest number of counters in a pile is 1. Every pile has a different number of counters, so the next smallest piles would have 2, 3, 4 and 5.	0				
$1+2+3+4+5=15$ counters in the five piles.		2	3	4	5

Both of the largest
piles are now
possible for the
17th counter.
To keep the largest
pile as small as
possible, Tessa
can put the 17th
counter in the
second-largest pile.

Strategy 2: Draw a Diagram, and Reason Logically (2)

If Tessa moves a counter from one pile to another, she still has 20 counters, but the number of counters in both of those piles will change.

If Tessa does this again, she'll end up with piles that are the same size as the ones she created last time.
However, if she moves two counters from one pile to another, she will end up with more differently-sized piles.

Tessa's largest pile must contain at least $\mathbf{6}$ counters.
Follow-Up: What is the largest number of counters that Tessa could have in the smallest pile? [2]

