

Hint: What is the smallest number of counters required to make five differently sized piles?

A PS A CALL OLYNPHILE	MATHS GAMES	APSMO WEDNESDAY 23 MARCH 2022	MATHS GAMES JUNIOR 1
1A.	Student Name:		
1B.	Fold here. Keep your a		
1C.	inswers hidden.		
1D.			
1E.			

1C. The question is, How many pizzas can Katelyn carry on her motorcycle by herself?

Strategy 1: Guess, Check and Refine

Suppose Katelyn can carry **10** pizzas on her motorcycle. With Jeff, she can carry **18**. So Jeff can carry **18** – **10** = **8** pizzas. With Lucy, she can carry **19**. So Lucy can carry **19** – **10** = 9 pizzas. Together, Jeff and Lucy can carry **8** + **9** = **17** pizzas.

Suppose Katelyn can carry **11** pizzas on her motorcycle. With Jeff, she can carry **18**. So Jeff can carry **18** – **11** = **7** pizzas. With Lucy, she can carry **19**. So Lucy can carry **19** – **11** = 8 pizzas. Together, Jeff and Lucy can carry **7** + 8 = **15** pizzas.

We're getting close - We want a solution where Jeff and Lucy together can carry **13** pizzas. Let's increase our guess for Katelyn even further.

Suppose Katelyn can carry **12** pizzas on her motorcycle. With Jeff, she can carry **18**. So Jeff can carry **18** – **12** = **6** pizzas. With Lucy, she can carry **19**. So Lucy can carry **19** – **12** = **7** pizzas. Together, Jeff and Lucy can carry **6** + **7** = **13** pizzas.

Katelyn's Pizzas	10	11	12	
Jeff's Pizzas	8	7	6	
Lucy's Pizzas	9	8	7	
leff + Lucy	17	15	13	

That matches the question, so we can see that Katelyn can carry **12** pizzas on her motorcycle.

Strategy 2: Reason Logically

Let's think of pairs of motorcycle delivery drivers, working on three separate deliveries.	In those three deliveries: Each driver carried their maximum load. 	00000000000000000000000000000000000000
For Delivery 1, Jeff and Katelyn delivered 18 pizzas.	 18 + 19 + 13 = 50 pizzas were delivered. Each driver went out twice. 	\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$ \$\$\$\$
For Delivery 2, Katelyn and Lucy delivered 19 pizzas.	This means that, if each driver only went out once, then together they would have delivered 50 ÷ 2 = 25 pizzas.	\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$ \$\$\$\$ \$\$
For Delivery 3, Jeff and Lucy delivered 13 pizzas.	Working together, Jeff and Lucy are able to deliver 13 pizzas. So Katelyn must be able to carry 25 – 13 = 12 pizzas on her motorcycle.	

Follow-Up: Morgan starts work as another motorcycle pizza delivery driver. Together, Morgan and Jeff can carry 16 pizzas. Working together, how many pizzas can Morgan and Lucy carry on their motorcycles? [17]

Katelyn's Pizzas	10		
Jeff's Pizzas	8		
Lucy's Pizzas	9		
Jeff + Lucy	17		

10

8

9

17

11

7

8

15

Katelyn's Pizzas

Jeff's Pizzas

Lucy's Pizzas

Jeff + Lucy

MATHS GAMES

JUNIOR

1D. The question is, How many 5kg bags of ice did Dan buy?

Strategy 1: Guess, Check and Refine

Let's guess that Dan bought 5 bags containing 5 kg of ice.
He would have 5×5 kg = 25 kg of ice in 5 kg bags.
Dan would then have 10 – 5 = 5 bags containing 2kg of ice.
That's <mark>5 × 2kg = 10</mark> kg of ice in <mark>2</mark> kg bags.
In total. Dan would have 25kg + 10kg = 35kg of ice.

No. of 5 kg bags	5		
Ice in 5 kg bags (kg)	25		
No. of 2 kg bags	5		
lce in 2 kg bags (kg)	10		
Total ice (kg)	35		

JUNIOR

That's too much. The question says that Dan ended up with 32kg of ice.

To end up with less ice, we might swap one of the 5kg bags for a 2kg bag.

Suppose Dan bought 4 bags containing 5 kg of ice. He would have 4×5 kg = 20kg of ice in 5kg bags. There would be 10 - 4 = 6 bags containing 2kg of ice, for a total of 6×2 kg = 12kg of ice in 2kg bags. In total, Dan would have 20 kg + 12 kg = 32 kg of ice.

No. of 5 kg bags	5	4	
Ice in 5 kg bags (kg)	25	20	
No. of 2 kg bags	5	6	
Ice in 2 kg bags (kg)	10	12	
Total ice (kg)	35	32	

That matches the question, so we can see that Dan bought 4 bags each containing 5 kg of ice.

Strategy 2: Draw a Diagram, and Reason Logically

Strategy 3: Draw a Diagram, and Reason Logically

Follow-Up: Harry wants to buy 20kg of ice. In how many different ways can he do this, if ice is only sold in 2kg and 5kg bags? [3 ways: Four 5kg bags, two 5kg bags + five 2kg bags, or ten 2kg bags]

444354Tessa's largest pile must contain at least 6 counters.

Follow-Up: What is the largest number of counters that Tessa could have in the smallest pile? [2]

Copyright © 2022 Australasian Problem Solving Mathematical Olympiads (APSMO) Inc. All rights reserved.